Reg. No.:			٦
neg. No			

Question Paper Code: 52920

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.

Sixth/Seventh/Eighth Semester

Electronics and Communication Engineering

EC 6601 — VLSI DESIGN

(Common to Electrical and Electronics Engineering, Biomedical Engineering, Electronics and Instrumentation Engineering, Medical Electronics, Robotics and Automation Engineering)

(Regulation 2013)

(Also Common to PTEC 6601 — VLSI Design for B.E. Part-Time – Seventh Semester – Electronics and Communication Engineering – Regulation 2014)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Define threshold voltage of MOSFET.
- 2. By what factor, gate capacitance must be scaled if constant electric field scaling is employed?
- 3. State the various types of power dissipation.
- 4. Draw a 2-input XOR using nMOS pass transistor logic.
- 5. Define clock skew.
- 6. Draw a 1-transistor Dynamic RAM cell.
- 7. Define kill term, propagate and generate term in a carry look ahead adder.
- 8. State radix-2 booth encoding table.
- 9. Differentiate full custom and semi-custom design.
- 10. State the three important blocks in FPGA architecture.

PART B - (5 × 13 = 65 marks)

11.	(a)	(i)	Derive an expression for Ids of nMOS in linear and saturated reg	gion. (6)
		(ii)	Draw a CMOS inverter. Analyze the switching characteriduring rise time when V _{in} changes from high to low.	stics (7)
			Or	1.63
	(b)	(i)	Draw the stick diagram of CMOS inverter.	(7)
		(ii)	State the minimum width and minimum spacing lambda b design rules to draw the layout.	ased (6)
12.	(a)	(i)	Derive an expression for dynamic power dissipation.	(7)
		(ii)	Realize the following function $Y = (A + BC)D + E$ using some CMOS logic.	tatic (6)
			Or	
	(b)	sele	A, B, C and D be the inputs of a data selector and S0 and S1 be ct lines. Realize a 4:1 data selector using (i) nMOS pass trans (ii) transmission gate approach. Compare the hardware comple	istor
13.	(a)		ign a D-latch using Transmission gate. Using which realize a se non-overlapping master-slave negative edge triggered D-Flip-	
			Or	
	(b)	Elu	cidate in detail low power SRAM circuit.	(13)
14.	(a)		ive the necessary expressions of a 4-bit carry look ahead adder lize the carry out expressions using Dynamic CMOS logic. Or	and (13)
	(b)		sign a 4-bit unsigned array multiplier and analyze its hard aplexity.	ware (13)
15.	(a)*	Elű	cidate in detail the basic FPGA architecture.	(13)
			Or	
	(b)	Des	scribe FPGA interconnect routing resources with neat diagram.	(13)

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) Realize a 2-input XOR using static CMOS, transmission gate and dynamic CMOS logic. Analyze the hardware complexity. (15)

Or

(b) Apply radix-2 booth encoding to realize a 4-bit signed multiplier for $(-10)^*(-11)$. (15)

3

The state of the s